One-step iterative methods and their qualitative analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative analysis of one-step iterative methods and consistent matrix splittings

A qualitative analysis of one-step iterative methods is presented with special regard to the connection between concavity preservation and time-monotonicity. We also analyze the relation of one-step iterative methods to matrix splitting methods. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

S-Step and Communication-Avoiding Iterative Methods

In this paper we make an overview of s-step Conjugate Gradient and develop a novel formulation for s-step BiConjugate Gradient Stabilized iterative method. Also, we show how to add preconditioning to both of these s-step schemes. We explain their relationship to the standard, block and communication-avoiding counterparts. Finally, we explore their advantages, such as the availability of matrix-...

متن کامل

Block s-step Krylov iterative methods

Block (including s-step) iterative methods for (non)symmetric linear systems have been studied and implemented in the past. In this article we present a (combined) block s-step Krylov iterative method for nonsymmetric linear systems. We then consider the problem of applying any block iterative method to solve a linear system with one right-hand side using many linearly independent initial resid...

متن کامل

Block Implicit One - Step Methods

A class of one-step methods which obtain a block of r new values at each step are studied. The asymptotic behavior of both implicit and predictor-corrector procedures is examined.

متن کامل

Theory and Methods for One -step Odes

where f is continuous and outputs an Rd vector. approximation on grid functions Let y(t) be the true solution. LetH be the grid dened by step-sizes: h1 , . . . , hN such that 0 < t1 < . . . < tN satises t i = ∑ l=1 h i .1 Let ∣H∣ = maxi h i . 1 is is just the obvious grid where h i = t i − t i−1 . We are parameterizing it by the step-sizes h i instead of times because h is what shows up in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2006

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2006.141